Surrogate provides methods for different surrogate formulations of the original problem.
More...
|
def | SUAVE.Surrogate.kriging_surrogate_functions.build_kriging_models (obj_values, inputs, constraints) |
|
def | SUAVE.Surrogate.scikit_surrogate_functions.build_scikit_models (surrogate_optimization, obj_values, inputs, constraints) |
|
def | SUAVE.Surrogate.svr_surrogate_functions.build_svr_models (obj_values, inputs, constraints, kernel='rbf', C=1E5, epsilon=.01) |
|
def | SUAVE.Surrogate.svr_surrogate_functions.check_svr_accuracy (x, data_inputs, data_outputs, imin=-1) |
|
Surrogate provides methods for different surrogate formulations of the original problem.
◆ build_kriging_models()
def SUAVE.Surrogate.kriging_surrogate_functions.build_kriging_models |
( |
|
obj_values, |
|
|
|
inputs, |
|
|
|
constraints |
|
) |
| |
Uses the pyKriging package to build a surrogate formulation of an optimization problem
Inputs:
obj_values [array]
inputs [array]
constraints [array]
Outputs:
obj_surrogate callable function(inputs)
constraints_surrogates [array(callable function(inputs))]
surrogate_function callable function(inputs): returns the objective, constraints, and whether it succeeded as an int
◆ build_scikit_models()
def SUAVE.Surrogate.scikit_surrogate_functions.build_scikit_models |
( |
|
surrogate_optimization, |
|
|
|
obj_values, |
|
|
|
inputs, |
|
|
|
constraints |
|
) |
| |
Uses the scikit-learn package to build a surrogate formulation of an optimization problem
Inputs:
obj_values [array]
inputs [array]
constraints [array]
Outputs:
obj_surrogate callable function(inputs)
constraints_surrogates [array(callable function(inputs))]
surrogate_function callable function(inputs): returns the objective, constraints, and whether it succeeded as an int
◆ build_svr_models()
def SUAVE.Surrogate.svr_surrogate_functions.build_svr_models |
( |
|
obj_values, |
|
|
|
inputs, |
|
|
|
constraints, |
|
|
|
kernel = 'rbf' , |
|
|
|
C = 1E5 , |
|
|
|
epsilon = .01 |
|
) |
| |
Uses the scikit-learn package to build a surrogate formulation of an optimization problem,
using support vector regression. Includes additional options specific to support vector regression
Inputs:
obj_values [array]
inputs [array]
constraints [array]
kernel [string]
C [float]
epsilon [float]
Outputs:
obj_surrogate callable function(inputs)
constraints_surrogates [array(callable function(inputs))]
surrogate_function callable function(inputs): returns the objective, constraints, and whether it succeeded as an int
◆ check_svr_accuracy()
def SUAVE.Surrogate.svr_surrogate_functions.check_svr_accuracy |
( |
|
x, |
|
|
|
data_inputs, |
|
|
|
data_outputs, |
|
|
|
imin = -1 |
|
) |
| |
Determines how accurate the SVR function is at a given point
Inputs:
x [array]
data_inputs [array]
data_outputs [array]
imin [int]
Outputs:
output [float]