SUAVE  2.5.2
An Aerospace Vehicle Environment for Designing Future Aircraft
Surrogate

Surrogate provides methods for different surrogate formulations of the original problem. More...

Classes

class  SUAVE.Surrogate.Surrogate_Problem.Surrogate_Problem
 

Functions

def SUAVE.Surrogate.kriging_surrogate_functions.build_kriging_models (obj_values, inputs, constraints)
 
def SUAVE.Surrogate.scikit_surrogate_functions.build_scikit_models (surrogate_optimization, obj_values, inputs, constraints)
 
def SUAVE.Surrogate.svr_surrogate_functions.build_svr_models (obj_values, inputs, constraints, kernel='rbf', C=1E5, epsilon=.01)
 
def SUAVE.Surrogate.svr_surrogate_functions.check_svr_accuracy (x, data_inputs, data_outputs, imin=-1)
 

Detailed Description

Surrogate provides methods for different surrogate formulations of the original problem.

Function Documentation

◆ build_kriging_models()

def SUAVE.Surrogate.kriging_surrogate_functions.build_kriging_models (   obj_values,
  inputs,
  constraints 
)
Uses the pyKriging package to build a surrogate formulation of an optimization problem

Inputs:
obj_values          [array]
inputs              [array]
constraints         [array]

Outputs:
obj_surrogate            callable function(inputs)
constraints_surrogates   [array(callable function(inputs))]
surrogate_function       callable function(inputs): returns the objective, constraints, and whether it succeeded as an int 

◆ build_scikit_models()

def SUAVE.Surrogate.scikit_surrogate_functions.build_scikit_models (   surrogate_optimization,
  obj_values,
  inputs,
  constraints 
)
Uses the scikit-learn package to build a surrogate formulation of an optimization problem

Inputs:
obj_values          [array]
inputs              [array]
constraints         [array]

Outputs:
obj_surrogate            callable function(inputs)
constraints_surrogates   [array(callable function(inputs))]
surrogate_function       callable function(inputs): returns the objective, constraints, and whether it succeeded as an int 

◆ build_svr_models()

def SUAVE.Surrogate.svr_surrogate_functions.build_svr_models (   obj_values,
  inputs,
  constraints,
  kernel = 'rbf',
  C = 1E5,
  epsilon = .01 
)
Uses the scikit-learn package to build a surrogate formulation of an optimization problem,
using support vector regression. Includes additional options specific to support vector regression

Inputs:
obj_values          [array]
inputs              [array]
constraints         [array]
kernel              [string]
C                   [float]
epsilon             [float]

Outputs:
obj_surrogate            callable function(inputs)
constraints_surrogates   [array(callable function(inputs))]
surrogate_function       callable function(inputs): returns the objective, constraints, and whether it succeeded as an int 

◆ check_svr_accuracy()

def SUAVE.Surrogate.svr_surrogate_functions.check_svr_accuracy (   x,
  data_inputs,
  data_outputs,
  imin = -1 
)
Determines how accurate the SVR function is at a given point

Inputs:
x            [array]
data_inputs  [array]
data_outputs [array]
imin         [int]

Outputs:
output       [float]