|
def | __defaults__ (self) |
|
def | build_surrogate (self) |
|
def | iterative_optimization (self) |
|
def | __getattribute__ (self, k) |
|
def | __setattr__ (self, k, v) |
|
def | __delattr__ (self, k) |
|
def | __new__ (cls, *args, **kwarg) |
|
def | typestring (self) |
|
def | dataname (self) |
|
def | __str__ (self, indent='') |
|
def | __init__ (self, *args, **kwarg) |
|
def | __iter__ (self) |
|
def | itervalues (self) |
|
def | values (self) |
|
def | update (self, other) |
|
def | append_or_update (self, other) |
|
def | get_bases (self) |
|
def | append (self, value, key=None) |
|
def | deep_set (self, keys, val) |
|
def | deep_get (self, keys) |
|
def | pack_array (self, output='vector') |
|
def | unpack_array (self, M) |
|
def | do_recursive (self, method, other=None, default=None) |
|
Takes a SUAVE Optimization problem, builds a surrogate around it,
and iteratively finds the optimum of the surrogate, then samples at that point.
Stops when you hit max_iterations or it converges
Assumptions:
You're okay with represeting your problem with a surrogate
Source:
N/A