SUAVE  2.5.2
An Aerospace Vehicle Environment for Designing Future Aircraft
SUAVE.Optimization.Nexus.Nexus Class Reference
Inheritance diagram for SUAVE.Optimization.Nexus.Nexus:
SUAVE.Core.Data.Data

Public Member Functions

def __defaults__ (self)
 
def evaluate (self, x=None)
 
def objective (self, x=None)
 
def inequality_constraint (self, x=None)
 
def equality_constraint (self, x=None)
 
def all_constraints (self, x=None)
 
def unpack_inputs (self, x=None)
 
def constraints_individual (self, x=None)
 
def finite_difference (self, x, diff_interval=1e-8)
 
def translate (self, x=None)
 
- Public Member Functions inherited from SUAVE.Core.Data.Data
def __getattribute__ (self, k)
 
def __setattr__ (self, k, v)
 
def __delattr__ (self, k)
 
def __new__ (cls, *args, **kwarg)
 
def typestring (self)
 
def dataname (self)
 
def __str__ (self, indent='')
 
def __init__ (self, *args, **kwarg)
 
def __iter__ (self)
 
def itervalues (self)
 
def values (self)
 
def update (self, other)
 
def append_or_update (self, other)
 
def get_bases (self)
 
def append (self, value, key=None)
 
def deep_set (self, keys, val)
 
def deep_get (self, keys)
 
def pack_array (self, output='vector')
 
def unpack_array (self, M)
 
def do_recursive (self, method, other=None, default=None)
 

Public Attributes

 vehicle_configurations
 
 analyses
 
 missions
 
 procedure
 
 results
 
 summary
 
 optimization_problem
 
 fidelity_level
 
 last_inputs
 
 last_fidelity
 
 evaluation_count
 
 force_evaluate
 
 hard_bounded_inputs
 

Detailed Description

noun (plural same or nexuses)
    -a connection or series of connections linking two or more things
    -a connected group or series: a nexus of ideas.
    -the central and most important point or place
    
    This is the class that makes optimization possible. We put all the data and functions together to make
    your future dreams come true.
    
    Assumptions:
    You like SUAVE
    
    Source:
    Oxford English Dictionary

Member Function Documentation

◆ __defaults__()

def SUAVE.Optimization.Nexus.Nexus.__defaults__ (   self)
This sets the default values.
    
    Assumptions:
    None
    
    Source:
    N/A
    
    Inputs:
    None
    
    Outputs:
    None
    
    Properties Used:
    None

Reimplemented from SUAVE.Core.Data.Data.

◆ all_constraints()

def SUAVE.Optimization.Nexus.Nexus.all_constraints (   self,
  x = None 
)
Returns both the inequality and equality constraint values for your function
    
    Assumptions:
    N/A
    
    Source:
    N/A
    
    Inputs:
    x                  [vector]
    
    Outputs:
    scaled_constraints [vector]
    
    Properties Used:
    None

◆ constraints_individual()

def SUAVE.Optimization.Nexus.Nexus.constraints_individual (   self,
  x = None 
)
Put's the values of the problem in the right place.
    
    Assumptions:
    N/A
    
    Source:
    N/A
    
    Inputs:
    x                  [vector]
    
    Outputs:
    None
    
    Properties Used:
    None

◆ equality_constraint()

def SUAVE.Optimization.Nexus.Nexus.equality_constraint (   self,
  x = None 
)
Retrieve the equality constraint values for your function
    
    Assumptions:
    N/A
    
    Source:
    N/A
    
    Inputs:
    x                  [vector]
    
    Outputs:
    scaled_constraints [vector]
    
    Properties Used:
    None

◆ evaluate()

def SUAVE.Optimization.Nexus.Nexus.evaluate (   self,
  x = None 
)
This function runs the problem you setup in SUAVE.
    If the last time you ran this the inputs were the same, a cache is used.
    
    Assumptions:
    None
    
    Source:
    N/A
    
    Inputs:
    x       [vector]
    
    Outputs:
    None
    
    Properties Used:
    None

◆ finite_difference()

def SUAVE.Optimization.Nexus.Nexus.finite_difference (   self,
  x,
  diff_interval = 1e-8 
)
Finite difference gradients and jacobians of the problem.
    
    Assumptions:
    N/A
    
    Source:
    N/A
    
    Inputs:
    x                  [vector]
    diff_interval      [float]
    
    Outputs:
    grad_obj           [vector]
    jac_con            [array]
    
    Properties Used:
    None

◆ inequality_constraint()

def SUAVE.Optimization.Nexus.Nexus.inequality_constraint (   self,
  x = None 
)
Retrieve the inequality constraint values for your function
    
    Assumptions:
    N/A
    
    Source:
    N/A
    
    Inputs:
    x                  [vector]
    
    Outputs:
    scaled_constraints [vector]
    
    Properties Used:
    None

◆ objective()

def SUAVE.Optimization.Nexus.Nexus.objective (   self,
  x = None 
)
Retrieve the objective value for your function
    
    Assumptions:
    N/A
    
    Source:
    N/A
    
    Inputs:
    x       [vector]
    
    Outputs:
    scaled_objective [float]
    
    Properties Used:
    None

◆ translate()

def SUAVE.Optimization.Nexus.Nexus.translate (   self,
  x = None 
)
Make a pretty table view of the problem with objective and constraints at the current inputs
    
    Assumptions:
    N/A
    
    Source:
    N/A
    
    Inputs:
    x                  [vector]
    
    Outputs:
    inpu               [array]
    const_table        [array]
    
    Properties Used:
    None

◆ unpack_inputs()

def SUAVE.Optimization.Nexus.Nexus.unpack_inputs (   self,
  x = None 
)
Put's the values of the problem in the right place.
    
    Assumptions:
    N/A
    
    Source:
    N/A
    
    Inputs:
    x                  [vector]
    
    Outputs:
    None
    
    Properties Used:
    None

The documentation for this class was generated from the following file: